Curated Optogenetic Publication Database

Search precisely and efficiently by using the advantage of the hand-assigned publication tags that allow you to search for papers involving a specific trait, e.g. a particular optogenetic switch or a host organism.

Showing 1 - 4 of 4 results
1.

Steric Interactions at Gln154 in ZEITLUPE Induce Reorganization of the LOV Domain Dimer Interface.

blue LOV domains Background
bioRxiv, 7 Oct 2020 DOI: 10.1101/2020.10.05.326595 Link to full text
Abstract: Plants measure light, quality, intensity, and duration to coordinate growth and development with daily and seasonal changes in environmental conditions, however, the molecular details linking photochemistry to signal transduction remain incomplete. Two closely related Light, Oxygen, or Voltage (LOV) domain containing photoreceptor proteins ZEITLUPE (ZTL) and FLAVIN-BINDING, KELCH REPEAT, F-BOX 1 (FKF1) divergently regulate the protein stability of circadian clock and photoperiodic flowering components to mediate daily and seasonal development. Using structural approaches, we identified that mutations at the Gly46 position led to global rearrangements of the ZTL dimer interface. Specifically, introduction of G46S and G46A variants that mimic equivalent residues found in FKF1 induce a 180° rotation about the dimer interface that is coupled to ordering of N- and C-terminal signaling elements. These conformational changes hinge upon rotation of a C-terminal Gln residue analogous to that present in light-state structures of ZTL. The results presented herein, confirm a divergent signaling mechanism within ZTL that deviates from other members of the LOV superfamily and suggests that mechanisms of signal transduction in LOV proteins may be fluid across the LOV protein family.
2.

Structure and Function of the ZTL/FKF1/LKP2 Group Proteins in Arabidopsis.

blue LOV domains Review Background
Enzymes, 8 Sep 2014 DOI: 10.1016/b978-0-12-801922-1.00009-9 Link to full text
Abstract: The ZTL/FKF1/LKP2 group proteins are LOV-domain-based blue-light photoreceptors that control protein degradation by ubiquitination. These proteins were identified relatively recently and are known to be involved in the regulation of the circadian clock and photoperiodic flowering in Arabidopsis. In this review, we focus on two topics. First, we summarize the molecular mechanisms by which ZTL and FKF1 regulate these biological phenomena based on genetic and biochemical analyses. Next, we discuss the chemical properties of the ZTL family LOV domains obtained from structural, biophysical, and photochemical characterizations of the LOV domains. These two different levels of approach unveiled the molecular mechanisms by which plants utilize ZTL and FKF1 proteins to monitor light for daily and seasonal adaptation.
3.

Arabidopsis CRY2 and ZTL mediate blue-light regulation of the transcription factor CIB1 by distinct mechanisms.

blue Cryptochromes Background
Proc Natl Acad Sci USA, 7 Oct 2013 DOI: 10.1073/pnas.1308987110 Link to full text
Abstract: Plants possess multiple photoreceptors to mediate light regulation of growth and development, but it is not well understood how different photoreceptors coordinate their actions to jointly regulate developmental responses, such as flowering time. In Arabidopsis, the photoexcited cryptochrome 2 interacts with the transcription factor CRYPTOCHROME-INTERACTING basic helix-loop-helix 1 (CIB1) to activate transcription and floral initiation. We show that the CIB1 protein expression is regulated by blue light; CIB1 is highly expressed in plants exposed to blue light, but levels of the CIB1 protein decreases in the absence of blue light. We demonstrate that CIB1 is degraded by the 26S proteasome and that blue light suppresses CIB1 degradation. Surprisingly, although cryptochrome 2 physically interacts with CIB1 in response to blue light, it is not the photoreceptor mediating blue-light suppression of CIB1 degradation. Instead, two of the three light-oxygen-voltage (LOV)-domain photoreceptors, ZEITLUPE and LOV KELCH PROTEIN 2, but not FLAVIN-BINDING KELCH REPEAT 1, are required for the function and blue-light suppression of degradation of CIB1. These results support the hypothesis that the evolutionarily unrelated blue-light receptors, cryptochrome and LOV-domain F-box proteins, mediate blue-light regulation of the same transcription factor by distinct mechanisms.
4.

LOV domain-containing F-box proteins: light-dependent protein degradation modules in Arabidopsis.

blue LOV domains Review
Mol Plant, 8 Mar 2012 DOI: 10.1093/mp/sss013 Link to full text
Abstract: Plants constantly survey the surrounding environment using several sets of photoreceptors. They can sense changes in the quantity (=intensity) and quality (=wavelength) of light and use this information to adjust their physiological responses, growth, and developmental patterns. In addition to the classical photoreceptors, such as phytochromes, cryptochromes, and phototropins, ZEITLUPE (ZTL), FLAVIN-BINDING, KELCH REPEAT, F-BOX 1 (FKF1), and LOV KELCH PROTEIN 2 (LKP2) proteins have been recently identified as blue-light photoreceptors that are important for regulation of the circadian clock and photoperiodic flowering. The ZTL/FKF1/LKP2 protein family possesses a unique combination of domains: a blue-light-absorbing LOV (Light, Oxygen, or Voltage) domain along with domains involved in protein degradation. Here, we summarize recent advances in our understanding of the function of the Arabidopsis ZTL/FKF1/LKP2 proteins. We summarize the distinct photochemical properties of their LOV domains and discuss the molecular mechanisms by which the ZTL/FKF1/LKP2 proteins regulate the circadian clock and photoperiodic flowering by controlling blue-light-dependent protein degradation.
Submit a new publication to our database